- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Malekar, Jinendra (2)
-
Roy, Kaushik (2)
-
Sheth, Amit (2)
-
Dolbir, Nathan (1)
-
Gaur, Manas (1)
-
Goswami, Raxit (1)
-
Khandelwal, Vedant (1)
-
Narayanan, Vignesh (1)
-
Zhang, Qi (1)
-
Zi, Yuxin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Language models have the potential to assess mental health using social media data. By analyzing online posts and conversations, these models can detect patterns indicating mental health conditions like depression, anxiety, or suicidal thoughts. They examine keywords, language markers, and sentiment to gain insights into an individual’s mental well-being. This information is crucial for early detection, intervention, and support, improving mental health care and prevention strategies. However, using language models for mental health assessments from social media has two limitations: (1) They do not compare posts against clinicians’ diagnostic processes, and (2) It’s challenging to explain language model outputs using concepts that the clinician can understand, i.e., clinician-friendly explanations. In this study, we introduce Process Knowledge-infused Learning (PK-iL), a new learning paradigm that layers clinical process knowledge structures on language model outputs, enabling clinician-friendly explanations of the underlying language model predictions. We rigorously test our methods on existing benchmark datasets, augmented with such clinical process knowledge, and release a new dataset for assessing suicidality. PKiL performs competitively, achieving a 70% agreement with users, while other XAI methods only achieve 47% agreement (average inter-rater agreement of 0.72). Our evaluations demonstrate that PK-iL effectively explains model predictions to clinicians.more » « less
-
Roy, Kaushik; Khandelwal, Vedant; Goswami, Raxit; Dolbir, Nathan; Malekar, Jinendra; Sheth, Amit (, Proceedings of the AAAI Conference on Artificial Intelligence)After the pandemic, artificial intelligence (AI) powered support for mental health care has become increasingly important. The breadth and complexity of significant challenges required to provide adequate care involve:(a) Personalized patient understanding, (b) Safety-constrained and medically validated chatbot patient interactions, and (c) Support for continued feedback-based refinements in design using chatbot-patient interactions. We propose Alleviate, a chatbot designed to assist patients suffering from mental health challenges with personalized care and assist clinicians with understanding their patients better. Alleviate draws from an array of publicly available clinically valid mental-health texts and databases, allowing Alleviate to make medically sound and informed decisions. In addition, Alleviate's modular design and explainable decision-making lends itself to robust and continued feedback-based refinements to its design. In this paper, we explain the different modules of Alleviate and submit a short video demonstrating Alleviate's capabilities to help patients and clinicians understand each other better to facilitate optimal care strategies.more » « less
An official website of the United States government
